grasslife

Species diversity indices and community completeness index as indicators of short-term success of semi-natural grassland restoration

the case of GrassLIFE project

Martina Marei Viti¹, Solvita Rūsiņa², Madara Krūzmane², Līga Gavare², Marks Arnolds Župerka²

¹University of Bologna ²University of Latvia

Introduction

Methods

Results

Discussion

grasslife

Restoring EU priority grasslands and promoting their multiple use

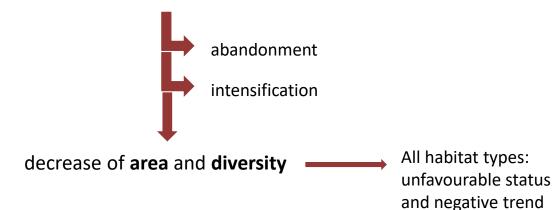
- Xeric sand calcareous grasslands (6120)
- Semi-natural dry grasslands and scrubland facies on calcareous substrates (6210)
- Species-rich Nardus grasslands, on siliceous substrates in mountain areas (6230)
- > Fennoscandian lowland species-rich dry to mesic grasslands (6270)
- Fennoscandian wooded meadows (6530)

Introduction

Methods

Results

Discussion

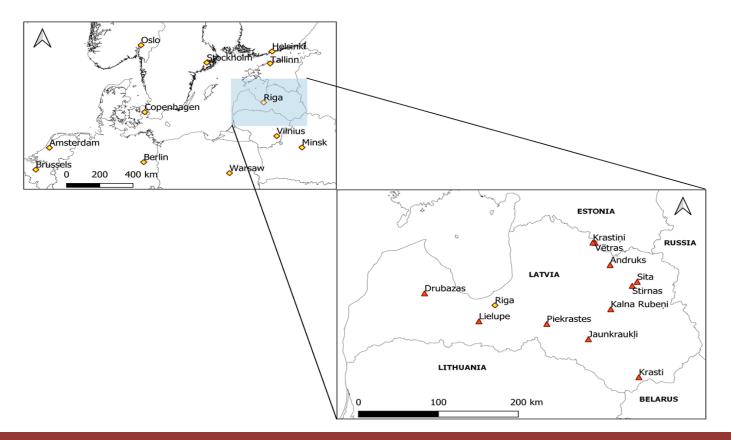


SEMI-NATURAL GRASSLANDS

threatened hotspots of biodiversity

- Record of **biodiversity** at small scale (up to $49m^2 \rightarrow 131$ species)
- Ecosystem services
- On-going global change processes

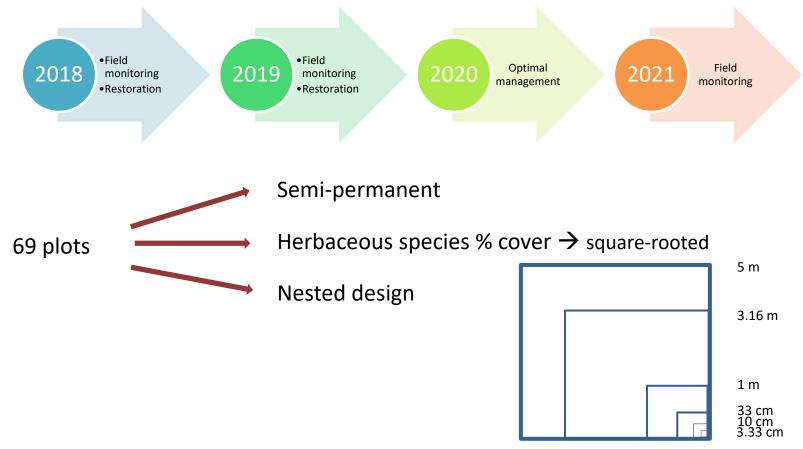
Introduction | Semi-natural grasslands

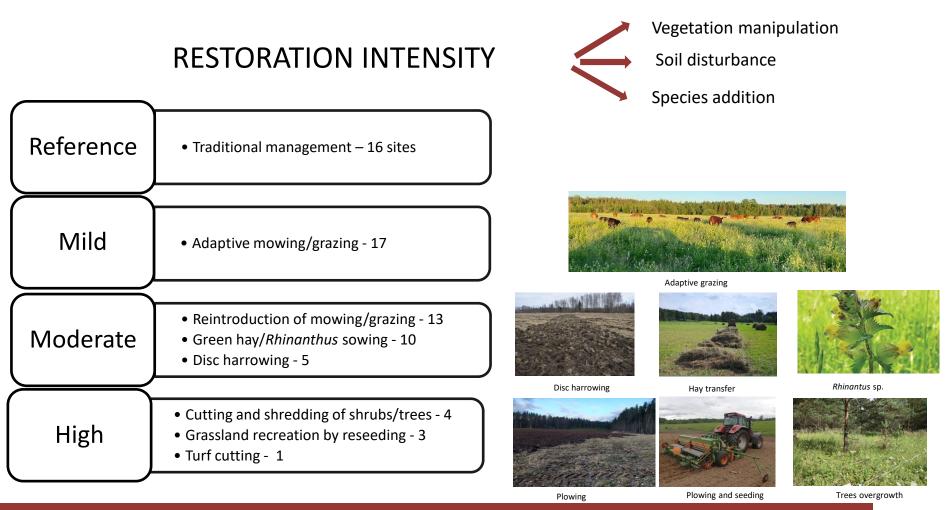

Introduction

Methods

Results

Discussion

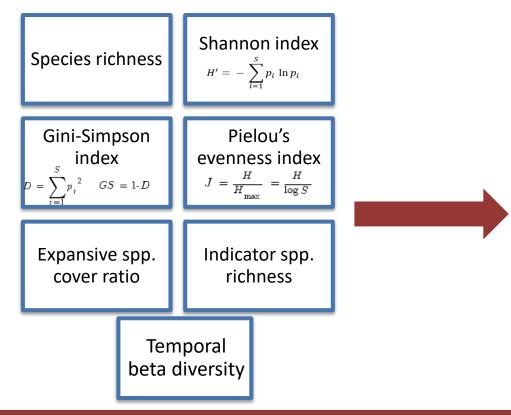

STUDY AREA

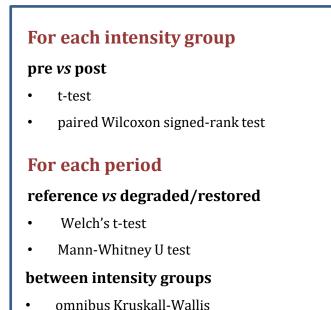


STUDY SITES

69 grasslands					
16 reference	53 degraded				
• Extensively managed by at least 30 years	 Ex-arable land ploughed 20 years ago or more No addition of fertilizers since conversion from arable land to grassland 				
 < 25 mg/kg⁻¹ soil phosphorus < 25 % expansive spp. cover ≥ 5 indicator species 	 > 25 mg/kg⁻¹ soil phosphorus > 25 % expansive spp. cover < 5 indicator species 				
Thymus serpyllum, Viscaria vulgaris					
Reference grassland with <i>Helictotrichon</i> pratense and Filipendula vulgaris	Dominance of Anthryscus sylvestris, Dactylis glomerata , Elytrigia repens				
Methods Study sites 8					

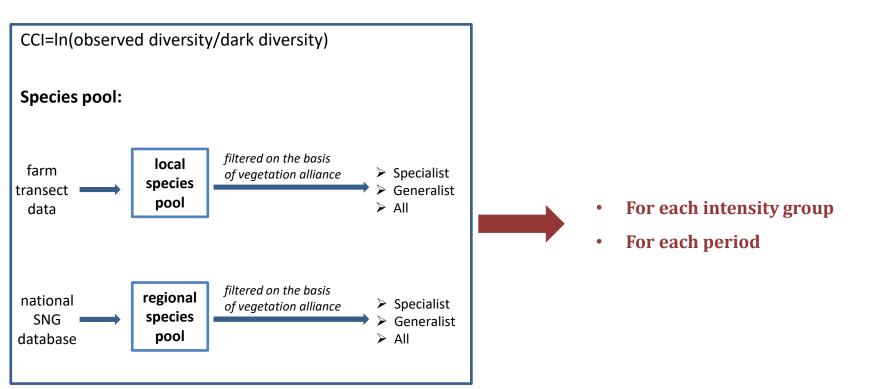
SAMPLING DESIGN





ANALYTICAL METHODS

changes in species diversity

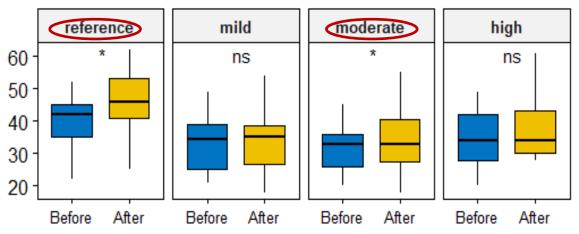


- OIIIIIDUS NI USKAII- WAIIIS
- posthoc Dunn multiple comparison (Holm correction)

ANALYTICAL METHODS

changes in community completeness

Introduction


Methods

Results

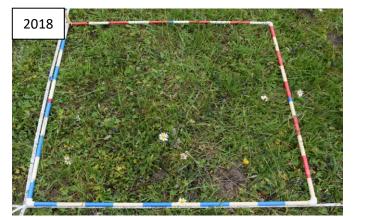
Discussion

RESULTS changes in species diversity

Herbaceous species richness

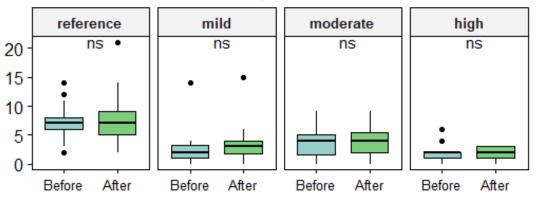
between intensity groups

• Overall significant difference


Reference

Dry grassland with Filipendula vulgaris and Helictotrichon pubescens.

Low vegetation and low species richness in 2018 (extreme drought)



Higher biomass, higher species richness in 2021

Restoration	Restoration	Shannon	Gini-	Pielou's
period	intensity	index	Simpson	evenness
	group		index	
Pre	reference	2.9±0.4	0.9±0.1	0.8±0.1
	mild	2.5±0.5*	0.8±0.1**	0.7±0.1*
	moderate	2.5±0.5*	0.8±0.1*	0.7±0.1
	high	2.7±0.2	0.9±0.0	0.8±0.1
Post	reference	3.0±0.3	0.9±0.1	0.8±0.1
	mild	2.7±0.4	0.9±0.1	0.8±0.1
	moderate	2.7±0.3	0.9±0.0	0.8±0.1
	high	2.8±0.4	0.9±0.0	0.8±0.0

between intensity groups

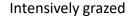
• Overall significant difference (no Simpson index)

Indicator species richness

between intensity groups

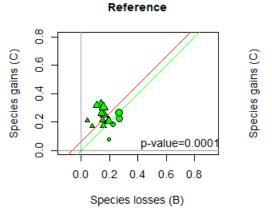
• Overall significant difference

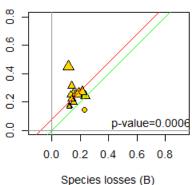
Expansive spp. cover ratio



Moderate intensity

Dry grassland with Poa angustifolia, Pimpinella saxifraga and Solidago virgaurea.





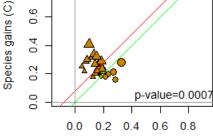
- litter layer density decreased
- expansive species cover decreased: Equisetum arvense and Solidago virgaurea.

Temporal Beta Diversity

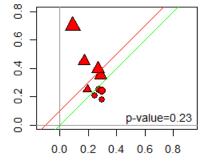
abundances-per-species

Low restoration intensity

Veronica chamaedrys


Cerastium holosteoides

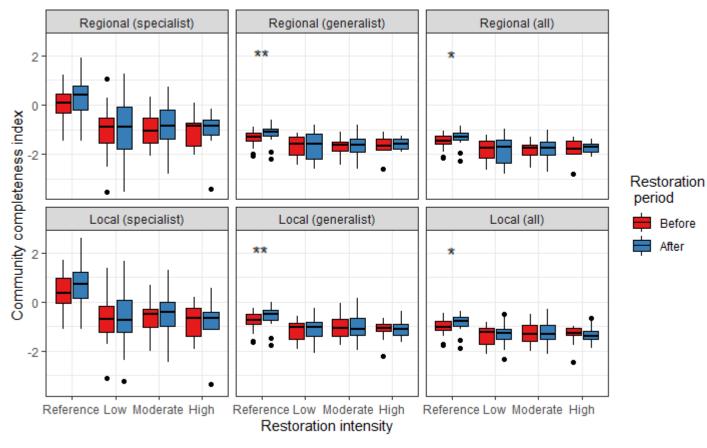
Stellaria graminea


Moderate restoration intensity

8.0

Species losses (B)

High restoration intensity


Species gains (C)

Species losses (B)

Results | Changes in species diversity

RESULTS

changes in community completeness

- Lack of recruitment of specialist species from both local and regional species pools
- No changes in restored sites

Introduction

Methods

Results

Discussion

DISCUSSION

Remarkable differences in **richness** and **evenness** components of species diversity

- - dispersal limitation
 - transient soil seed bank
- Local scale
 - environmental filtering
 - mutualist plant-pollinator or plant-mychorriza assemblages
- Colonization credit •

Introduction

Methods

Results

Discussion

CONCLUSIONS

- No clear pattern in relation to restoration intensity
- Positive changes in mild and moderate groups
- Keep an eye to reference sites!
- Characterize the **species identity** \rightarrow specialist and generalist

- Species richness alone might lead to wrong conclusion \rightarrow take into account **evenness**!
- Community completeness analysis helps to assist ecological recovery in the long-term

multiple indicators gl

Thank you!

2%

71